ilikeafrica.com

Innovative Summaries and Translations of Scientific Papers

Convergence of hydrodynamics in rapidly spinning strongly coupled plasma (빠르게 결합 된 혈장에서 빠르게 회전하는 유체 역학의 수렴)

|

본 게시물은 AI를 활용하여 논문 “Convergence of hydrodynamics in rapidly spinning strongly coupled plasma”에 대한 주요 내용을 요약하고 분석한 결과입니다. 심층적인 정보는 원문 PDF를 직접 참고해 주시기 바랍니다.


📄 Original PDF: Download / View Fullscreen

영문 요약 (English Summary)

This paper studies the convergence radius of hydrodynamics in rapidly spinning strongly coupled plasma. The authors compute the linearized relativistic hydrodynamic expansion around a non-trivially rotating Super-Yang-Mills plasma, which is sustained and can even get enhanced in highly vortical quark-gluon plasma such as those produced in heavy-ion collisions. They demonstrate that hydrodynamics can be computed using a rotating background analytic solution to ideal hydro-dynamic equations of motion with nonzero angular momentum and large vorticity gradients, resulting in boost symmetry. Transport coefficients for the rotating plasma are also provided as functions of their values in plasma at rest. The paper addresses questions about vorticity convergence through holographically dual Einstein hadrons (e.g., Lambda-hyperons) emitted in noncentral gravity collisions exhibiting spin polarization, indicating how angular momentum present early stages influences the emergence of hydrodynamics in the presence of vorticity.

한글 요약 (Korean Summary)

이 논문은 빠르게 결합 된 혈장을 빠르게 회전시키는 유체 역학의 수렴 반경을 연구한다. 저자는 비 사소하게 회전하는 슈퍼 양 밀 플라즈마 주변에서 선형화 된 상대 론적 유체 역학적 팽창을 계산하며, 이는 지속되고 심지어 이온 충돌에서 생성 된 것과 같은 고도로 소용돌이 치는 쿼크 글루온 혈장에서도 향상 될 수 있습니다. 그들은 유체 역학이 0이 아닌 각 운동량 및 큰 와류 그라디언트를 갖는 이상적인 하이드로-동적 운동 방정식에 대한 회전 배경 분석 솔루션을 사용하여 계산할 수 있음을 보여 주어 대칭을 부양시킨다. 회전 혈장의 수송 계수는 또한 휴식시 혈장에서의 값의 함수로 제공됩니다. 이 논문은 스핀 편광을 나타내는 비 중성 중력 충돌에서 방출 된 홀로그래피 이중 아인슈타인 하드론 (예 : 람다-히퍼 론)을 통한 소용돌이 수렴에 대한 질문을 다루며, 각 운동량이 초기 단계가 어떻게 초기 단계가 소용돌이의 존재 하에서 유체 역학의 출현에 영향을 미치는지를 나타낸다.

주요 기술 용어 설명 (Key Technical Terms)

이 논문의 핵심 개념을 이해하는 데 도움이 될 수 있는 주요 기술 용어와 그 설명을 제공합니다. 각 용어 옆의 링크를 통해 관련 외부 자료를 검색해 보실 수 있습니다.

  • Wigner-D functions [Wikipedia (Ko)] [Wikipedia (En)] [나무위키] [Google Scholar] [Nature] [ScienceDirect] [PubMed]
    설명: 횡단 평면 모드 또는 전단 분해의 음향 절차와 비슷한 표준 절차와 유사한 중형 충돌로 생성 된 빠르게 회전하는 플라즈마를위한 시간 의존적 흐름 프로파일 및 에너지 밀도 분포를 설명하는 데 사용되는 기능. 이 기능은 여러 부문을 분리하여 대칭을 부스트합니다.
    (Original: Functions used to describe time-dependent flow profiles and energy density distributions for rapidly rotating plasma created in heavy-ion collisions, resembling standard procedures such as soundrotations in transverse plane modes or shear di�usion. These functions decouple several sectors, giving rise to boost symmetry.)
  • Tensor fluctuations [Wikipedia (Ko)] [Wikipedia (En)] [나무위키] [Google Scholar] [Nature] [ScienceDirect] [PubMed]
    설명: (한글 설명 번역 실패 또는 없음)
    (Original: Fluctuations that arise from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity, splitting into two outgoing pieces. Tensor fluctuations are obtained from eigenvalue equations for energy momentum tensor T νµ on the gravity side and correspond to a e−iωτr2h++(r)σ+µ σ+ν DJ(J −1)M) ,concentrated at mid-rapidity,)
원문 발췌 및 번역 보기 (Excerpt & Translation)

원문 발췌 (English Original)

Convergence of hydrodynamics in rapidly spinning strongly coupled plasma Casey Cartwright,∗Markus Garbiso Amano,† and Matthias Kaminski‡ Department of Physics and Astronomy, University of Alabama, 514 University Boulevard, Tuscaloosa, AL 35487, USA Jorge Noronha§ and Enrico Speranza¶ Illinois Center for Advanced Studies of the Universe, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (Dated: December 22, 2021) We compute the radius of convergence of the linearized relativistic hydrodynamic expansion around a non-trivially rotating strongly coupled N = 4 Super-Yang-Mills plasma. Our results show that the validity of hydrodynamics is sustained and can even get enhanced in a highly vortical quark-gluon plasma, such as the one produced in heavy-ion collisions. The hydrodynamic dispersion relations are computed using a rotating background that is an analytic solution of the ideal hydro- dynamic equations of motion with non-vanishing angular momentum and large vorticity gradients, giving rise to a particular boost symmetry. Analytic equations for the transport coefficients of the rotating plasma as a function of their values in a plasma at rest are given.2021 Introduction.—Relativistic hydrodynamics is a pow- plicitly obtained from their values in the plasma at rest.Dec erful tool to describe the late time, long wavelength Holographic model.— In order to determine the val- behavior of the strongly coupled quark-gluon plasma ues of hydrodynamic transport coefficients, we compute 20 (QGP) formed in ultrarelativistic heavy-ion collisions hydrodynamic modes and correlation functions of N = [1–3]. Recent experimental results show that certain 4 SYM plasma with the holographically dual Einstein hadrons (e.g. Lambda-hyperons) emitted in noncentral gravity S = 1/(16πG5) R d5x√−g(R −2Λ), where R collisions exhibit nonzero spin polarization, which indi- is the Ricci scalar, G5 is the five-dimensional gravita- cates that the QGP is the most vortical fluid observed tional Newton constant, and Λ the cosmological con- to date…

발췌문 번역 (Korean Translation)

신속하게 회전하는 유체 역학의 수렴 혈장 카트라이트, * Markus Garbiso Amano, † 및 Matthias Kaminski ‡ 앨라배마 대학교, 514 University Boulevard, Al 35487, USA Jorge Norna genged ongains ongain genza genza speranza speranza genged. 미국 일리노이 주 일리노이 대학교 (University of Illinois)의 Urbana-Champaign, Urbana, IL 61801 (Dated : 12 월 22 일) 우리는 비 열성적으로 회전하는 강하게 결합 된 n = 4 슈퍼–밀 플라즈마 주변의 선형화 된 상대 론적 유체 역학적 확장의 반경을 계산합니다. 우리의 결과는 유체 역학의 유효성이 지속되며 중형 충돌로 생성 된 것과 같은 매우 소용돌이 치는 쿼크 글루온 플라즈마에서 강화 될 수 있음을 보여줍니다. 유체 역학적 분산 관계는 비 정중 한 각도 운동량 및 큰 소용돌이 성적 구배를 갖는 이상적인 수력 동적 운동 방정식의 분석 솔루션 인 회전 배경을 사용하여 계산되어 특정 부스트 대칭을 유발합니다. REST의 플라즈마에서의 값의 함수로서 회전 혈장의 수송 계수에 대한 분석 방정식은 REST에서 플라즈마에서 혈장에서 값으로부터 값으로부터 값으로 얻은 강력한 도구를 설명하기위한 강력한 컷저 쿠스 인의 컨센트를 결정하기 위해 REST. 유체 역학적 전송 계수, 우리는 초 강성 헤비 이온 충돌로 형성된 20 (QGP)을 계산합니다. 최근의 실험 결과는 비 중앙 중력 S = 1/(16πg5) r d5x√ − g (r -2λ)에서 방출 된 홀로그래피 듀얼 아인슈타인 하드론 (예 : 람다- 하이퍼 론)을 갖는 특정 4 개의 증상 혈장을 보여줍니다. r ricci 스케일 인 r ricci 스케일 인 r 컨택은 ricci 스케일 인 r 컨소시엄이되는데, 여기서 r 콜라이트는 ricci scalies입니다. QGP는 뉴턴이 상수로 관찰 된 가장 와류의 유체이며, 우주론은 현재까지 …


출처(Source): arXiv.org (또는 해당 논문의 원 출처)

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다